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SUMMARY

A novel method to generate body-fitted grids based on the direct solution for three scalar functions is
derived. The solution for scalar variables j, h and z is obtained with a conventional finite volume method
based on a physical space formulation. The grid is adapted or re-zoned to eliminate the residual error
between the current solution and the desired solution, by means of an implicit grid-correction procedure.
The scalar variables are re-mapped and the process is reiterated until convergence is obtained. Calcula-
tions are performed for a variety of problems by assuming combined Dirichlet–Neumann and pure
Dirichlet boundary conditions involving the use of transcendental control functions, as well as functions
designed to effect grid control automatically on the basis of boundary values. The use of dimensional
analysis to build stable exponential functions and other control functions is demonstrated. Automatic
procedures are implemented: one based on a finite difference approximation to the Cristoffel terms
assuming local-boundary orthogonality, and another designed to procure boundary orthogonality. The
performance of the new scheme is shown to be comparable with that of conventional inverse methods
when calculations are performed on benchmark problems through the application of point-by-point and
whole-field solution schemes. Advantages and disadvantages of the present method are critically
appraised. Copyright © 1999 National Research Council of Canada.
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1. INTRODUCTION

Numerical methods are applied readily to a wide range of problems in fluid flow, heat, and
mass transfer. These may be considered to be governed by the single equation

D(f)=
(

(t
(rf)

Transient

+9a · (ru� f)
Convection

−9a ·G9a f
Diffusion

− s
Source

=0. (1)

A wide range of engineering problems based on Equation (1) have been solved successfully
through the use of computational fluid dynamics (CFD) codes based on established numerical
schemes, such as the finite volume method [1–3], where f=u, 6, w, h, . . . are solved itera-
tively. This paper shows how the grid variables may be added to the list of state variables.
Although grid smoothing and grid control should be considered as an integral part of the
overall solution procedure, in general, they are treated as a separate subject. Several books
[4,5] and review articles [6–8] have appeared on the subject.
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Grid generation involves the stipulative definition of functions denoted by Greek letters j i,
or alternatively j, h, z, which are to be considered a function of position j i(r� )=j i(x je� j), or
more simply j i=j i(x j). The relationships between j i and x j are prescribed through the use of
partial differential equations, as follows:

D(j i)
D(x j)

=0. (2)

The Roman letters xi (or x, y, z) denote Cartesian components. Equation (2) is sometimes
referred to as a ‘physical space’ formulation. The reader will note that this paper assumes
tensor notation [9] and the summation convention in order to present the formulation in a
compact fashion. Subsequently, the scalar notation j, h, z and x, y, z is adopted.

Allen [10], one of the pioneers of the so-called inverse methods, observed that the use of a
finite difference scheme with a Cartesian mesh leads to an imprecise prescription of (Neumann)
boundary conditions along curved boundaries and to an imperfect solution for z i. Instead, he
proposed the analytical inversion of the governing (Laplace) equations, i.e. the interchange of
dependent and independent variables

D(xi)
D(j j)

=0, (3)

so that the Cartesian co-ordinates of the grid are obtained in ‘transformed space’. Most grid
generation schemes are based on the analytical inversion of Equation (2), although formula-
tions have also been proposed directly in transformed space [11,12]. These early methods
caused grid folding, though more recent hyperbolic forms [13,14] are in use. Inverse methods
are not the only plausible approach to grid generation. If the governing equations are
formulated by means of vector operators, any suitable co-ordinate system may be employed to
obtain a solution, and Equation (2) may be written as

D(j i)=
D(j i)

D(j* j)
=0. (4)

In Equation (4), j*j could represent a Cartesian, polar [15,16] or general body-fitted co-ordi-
nate (BFC) system or grid, like the one used here. Equation (4) is the generic form solved in
this paper. An initial j*j grid is generated algebraically, and the equations for j i are discretised
in physical space. The key to the procedure is that values of the solved for scalars are
substituted back into the grid as the solution proceeds.

Figure 1 illustrates these ideas pictorially. With scalars specified as a function of position in
physical space, interpolation is required along curved boundaries to obtain the solution in
Cartesian co-ordinates, j i=j i(x j). In conventional schemes, the solution obtained for xi=
xi(j j) corresponds to a rectangular grid in the transformed space. The approach presented in
this paper provides the solution in a BFC system, in physical space. Because the system is
body-fitted, boundary interpolation is not required, and Allen’s problem does not arise.

The governing equations may be parabolic, hyperbolic or elliptic, the latter being the most
popular. Early elliptic grid generation equations were based on Laplace systems [17], where
only the diffusion term in Equation (1) is non-zero (with constant G). With suitable boundary
conditions, such a system can generate sets of orthogonal grids [18]. Laplace systems satisfy an
extremum principle, namely that the mapping be proper (1–1 and monotonic, with boundary
values spanning the interior). Numerous systems of equations based on diffusion source
(Poisson) equations [19,20], with the generic form
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D(j i)=9a ·9a j i−Pi=0, (5)

have been employed widely in grid generation. The source terms Pi (or P, Q, R) are used as
‘control functions’ in order to alter the position or slope of grid lines or surfaces. This form
corresponds to a simplified version of Equation (1) with s= −Pi. Well-established computa-
tional methods for this form have existed for years: this suggests that these methods could well
be adapted to grid smoothing. Note that the formulation is co-ordinate independent, i.e. it is
written in terms of the vector operator 9a . The inverse form is

g jk (2xi

(j j (jk−P j (x
i

(j j=0. (6)

This paper considers primarily numerical solutions for Equation (5), not Equation (6).

1.1. Finite 6olume equations

The so-called ‘mathematical’ form [21] of Equation (1) is

D(f)=
(

(t
(
gf)+

(

(j* j

�
gu jf−
gg jkG
(f

(j*k

�
−
gs=0, (7)

where f=j i=j, h, z, for i=1, 2, 3. The metric components, g jk and Jacobian 
g, refer to
the j*i co-ordinate system. The use of general scalar transport equations offers many
interesting possibilities. In order to illustrate the technique, however, attention will be focused
on the Poisson system used conventionally in grid generation, which may be considered a
subset of Equation (7), as follows:

(

(j* j

�
gg jk (f

(j*k

�
−
gPi=0. (8)

Equation (8) may be discretised as [1–3,22]

Figure 1. Conceptual schematic of grid generation methodology.
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fP=
aWfW+aEfE+aSfS+aNfN+aLfL+aHfH+aTfT+CV

aW+aE+aS+aN+aL+aH+aT+C
, (9)

where the dependent variables are f= (j, h, z), and the compass notation [1,3] W, E, S, N, L
and H refers to the west j*, east j*, south h*, north h*, low z*, and high z* neighbours of
P. For Poisson equations, the linking coefficients are due to diffusion alone. The T values refer
to the previous grid, and are to be considered as a mechanism for inertial relaxation (f is
steady, but the grid is not). The source term, S, is linearised according to

S=C(V−fP). (10)

In a non-orthogonal system, it is necessary to introduce the diagonal terms EN, EH, NH, etc.,
in the finite volume equations. This is accomplished by treating these as geometric source
terms, so that

S=SBC+SGEOM−
gP, (11)

where SGEOM is the non-orthogonal source term and SBC is a boundary source term. An
expression for SGEOM used in the present method is provided in Table I.

1.2. Grid correction

Suppose a BFC grid, with r� P* = (xP*, yP*, zP* ), has been generated. Let jref, href, zref be the
desired reference values, often chosen to be natural numbers 1, 2, 3, . . . If the grid corners are
not at the desired places, jP, hP, zP will differ from jref, href, zref. Displacement correction
factors r� % are then added as follows:

r� P=r� P* +ar� %P, (12)

and

r� %P= (jref−jP)
(r�
(j

+ (href−hP)
(r�
(h

+ (zref−zP)
(r�
(z

, (13)

where a is a linear relaxation coefficient. A central difference grid-correction scheme is used
with

(r�
(j

=
r� E−r� W

2
, (14)

(r�
(h

=
r� N−r� S

2
, (15)

(r�
(z

=
r� H−r� L

2
, (16)

where it is tacitly assumed that jrefE
−jrefP

=1. These could be chosen as real numbers or
values of jP, hP, zP at particular nodes; in this event, these terms should appear in the
denominator of the grid correction equations. Grid correction is applied implicitly over the
entire field. After re-zoning the grid, the state variables are re-mapped as follows:

f= (1−a)fP* +afref, f=j, h, z, (17)

and the process is repeated. (For the usual case a=1, f is simply re-set to initial values
1, 2, 3, . . . ) The numerical solution of the finite volume equations, together with the grid-cor-
rection procedure, constitute a complete description of the methodology.
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Table I. Comparison of present and inverse schemes

Present method Inverse method
f= (x, y, z)f= (j, h, z)

Coefficients aW= (
gg11)w, aE= (
gg11)e aE=aW= (g11)P

aN=aS= (g22)PaS= (
gg22)w, aN= (
gg22)n

aL= (
gg33)l, aH= (
gg33)h aL=aH= (g33)P

Non-orthogonal S=2gP
12(fen+fws−fes−fwn)S= (
gg12)e(fen−fes)+(
gg13)e(feh−fel)

terms −(
gg12)w(fwn−fws)−(
gg13)w(fwh−fwl) +2gP
13(feh+fwl−fel−fwh)

+2gP
23(fsh+fnl−fsl−fnh)+(
gg12)n(fen−fwn)+(
gg23)n(fnh−fnl)

−(
gg12)s(fes−fws)−(
gg23)s(fsh−fsl)

+(
gg13)h(feh−fwh)+(
gg23)h(fnh−fsh)

−(
gg13)l(fel−fwl)−(
gg23)l(fnl−fsl)

Control functions S=−[max(0, P)P(fE−fP)
S=−Í

Á

Ä

(
gP)P

(
gQ)P

(
gR)P

f=j

f=h

f=z
+min(0, P)P(fP−fW)

+max(0, Q)P(fN−fP)

+min(0, Q)P(f−fS)

+max(0, R)P(fH−fP)

+min(0, R)P(fP−fL)]

1.3. Solution procedure

A variety of algorithms has been established for the solution of Equation (9). These include
point-by-point, line, slab and whole-field solvers, which are documented in various reports and
theses [2,23]. These have been used in a number of CFD codes over the years. A series of inner
‘iterations’ are performed over the block for each field variable, on the basis of fixed values of
linking coefficients and source terms. After calculations have been performed for all field
variables, the grid is re-zoned implicitly. The metric components, gij, linking coefficients and
built-in sources are then updated. The entire process is repeated for a number of outer
iterations, or ‘sweeps’, until convergence is achieved.

1.4. Boundary conditions

Technically, the term ‘boundary condition’ applies to the scalar variables j, h, z, not the
current grid. These are prescribed as source terms, as described below.

(i) Neumann problem: the normal gradients (f/(n are equivalent to fixed sources. The
situation (f/(n=0 corresponds to the default S=0. (ii) Dirichlet problem: the f values are
fixed to V with a large coefficient, C (method of Payne and Irons [24]). The variable V should
be consistent at opposing nodes in two dimensions (2D) or around an entire ‘slab’ in three
dimensions (3D). (iii) Mixed Dirichlet–Neumann problem: corresponding to the ‘natural’
boundary value problem; this will produce good results under most circumstances. Two
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fixed-value Dirichlet boundary conditions are required in addition to two (2D) or four (3D)
Neumann boundary conditions. Practical considerations often prevent this formulation. Other
combinations are encountered: for example in 3D, the six boundary surfaces may be treated as
mixed Dirichlet–Neumann, as above, with the 12 bounding space curves fixed.

Grid correction is not necessary at Dirichlet boundaries. At Neumann boundaries, grid
correction is applied subject to an additional constraint: for example, j(x, y, z)=constant,
unless boundary orthogonality is induced by means of variable source terms, in which case grid
correction should not be applied.

1.5. Control functions

Control functions are often introduced as source terms and, typically, are formulated (1) to
concentrate cells in boundary layers, (2) to effect a measure of orthogonality (i.e. reduce
distortion) at grid boundaries, or both. Early control functions were transcendental functions
designed to concentrate cells in appropriate regions. So-called ‘automatic’ procedures were
introduced subsequently to compute the control functions from the boundary geometry. These
are discussed further below.

1.5.1. Transcendental control functions. The exponential forms of Thompson et al. [25] were
among the first used control functions:

P=a sign(j−j0)×exp(c �j−j0�), (18)

and

P=b sign(j−j0)×exp(−d [(j−j0)2+ (h−h0)2]1/2). (19)

These forms were used to effect attractions to surfaces j=j0 and space curves j=j0, h=h0

respectively. Frequently, surfaces are chosen to correspond to the boundary values j=1 or
j=n, although they could correspond to interior regions. A known problem of these functions
is that it is easy to generate values of P that cause numerical divergence. In one dimension
(1D), it can be shown that a diffusion source formulation will generate proper functions
satisfying the extremum principle if and only if

−25
PL2

jmax−jmin

52, (20)

where jmin and jmax are values at x=0 and x=L respectively. It is easy to derive the
conditions under which coefficients a and c in Equation (18) will violate this condition (e.g. for
j0=1). It is, however, possible to generate exponential-type control functions that do not
violate the extremum principle through the use of dimensional analysis. An example is a 1D
stretching function x+(j+),

x+ =
1−exp(aj+)

1−exp(a)
, (21)

where x+ =x−xmin/xmax−xmax, j+ =j−1/n−1, and n−1 is the number of cells in the
j-direction. This function congregates points in the form of a geometric progression for
constant Dj, and the sign of a determines to which boundary the grid lines are attracted.
Figure 2 shows the required property for the dj+/dx+ distribution is that of skewness for
asymmetric stretching functions and kurtosis for the symmetric case. The sharper the spike, the
more effective the concentration. Conversely, dj+/dx+ should not approach zero elsewhere,
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which would indicate that cells are being pulled out excessively. The control function is
obtained from d2j+/dx+2, and may be written as

P= −
�n−1

L2

�
×

(ea−1)2

a
exp

�
−2a

j−1
n−1

�
. (22)

This function does not suffer from the deficiencies discussed above. A Poisson equation, with
P prescribed according to Equation (22) satisfies Equation (21) in 1D. The length scale
L= �r� max−r� min� should always be a maximum to assure compliance with the extremum
principle. Other control function terms may be used [26] readily: for example, to concentrate
cells at both ends or the centre of the domain.

1.5.2. Automatic control functions. Transcendental control functions have been supplanted,
to some degree, by so-called ‘automatic’ schemes. The way these are usually computed from
the grid geometry is described below. Poisson’s equation may be rearranged to solve for Pi

(P, Q, R), where

Pi=g jk! i
jk
"

=gilg jk[ jk, l ] (23)

and Christoffel’s symbols are given by

[ jk, l ]=
(e� j
(xk ·e� l=

1
2
�(gjl

(jk+
(gkl

(j l −
(gjk

(j l

�
. (24)

Existing techniques invariably invoke this tautology, modified by the presumption of local
boundary orthogonality:

Pi=
[ jj, i ]
giigjj

(i, free; j, summed). (25)

Figure 2. 1D stretching functions: the skewness or kurtosis controls the mesh distribution: (a) constant source P ; (b)
one-sided attraction according to Equation (22); (c) two-sided attraction.
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Figure 3. Possible implementation schemes for ‘automatic’ control functions: (a) boundary j values fixed to desired
values; (b) j solved at the boundary, and source term adjusted until j reaches desired value; no grid correction is

applied at the wall.

The [ii, i ] terms are due to divergence [27] (dilatation), while the [ jj, i ] i" j are curvature terms,
frequently introduced in efforts to control line spacing near walls [28–31]. A number of
methods have been proposed for computing [ jj, i ], usually based on finite difference approxi-
mations to the spatial derivatives of the metric tensor components

gij=
(xk

(j i

(xk

(j j , (26)

or equivalent. In 2D, P and Q are thus obtained from the grid geometry at the boundary as

P=
1

r� ,j ·r� ,j
�

+
r� ,jj ·r� ,j
r� ,j ·r� ,j

−
r� ,hj ·r� ,h
r� ,h ·r� ,h

�
, (27)

and

Q=
1

r� ,h ·r� ,h
�

+
r� ,jh ·r� ,j
r� ,j ·r� ,j

−
r� ,hh ·r� ,h
r� ,h ·r� ,h

�
. (28)

This form is similar to that of Barron [32]. (N.B. the comma denotes the partial derivative,
r� ,j=e� 1, r� ,h=e� 2.) In transformed space, boundary values of (x, y, z) corresponding to integer
values of (j, h, z) are prescribed. The physical space analogue, as shown in Figure 3(a), is to
fix (j, h, z) to integer values along the boundary. A related, though different method [26]
involves the prescription of source terms corresponding to the ‘missing’ boundary terms. With
reference to Figure 3(b), the value of the source at the south wall is set according to

SP=SP* +aN(i−jP), (29)

where i is the desired value at P and S* is the previous value of S. This procures rather than
presumes orthogonality, and at the same time ensures jP= i, etc., in the fully converged state.
For reasons discussed below, the Neumann implementation (Figure 3(b)) is preferred to the
more usual Dirichlet formulation. This former approach can be implemented only by using the
physical space formulation described in this paper.
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A similar treatment is applied to j at the north boundary, h at the east and west boundaries,
and z at the low and high ends. Interior source terms (control functions) are interpolated from
the six sets of boundary values weighted according to the Jacobian 
g.

2. EXAMPLES

Figure 4(a)–(d) shows four elementary O-grids. Figure 4(a) is a Laplace system corresponding
to the mixed boundary value problem, with Djref=Dhref=1. In Figure 4(b), h cells have been
concentrated. This was achieved equivalently in two different ways: (a) by using the transcen-
dental control function defined in Equation (22), with href=1, 2, 3, . . . , and (b) by prescribing
href as a set of non-integer values according to a geometric progression (i.e. no control
function). Figure 4(c) shows a Dirichlet–Laplace system. Figure 4(d) demonstrates the use of
automatic control functions according to Equation (29) to obtain boundary orthogonality. The
same end may also be achieved by varying reference values. Figure 5 shows a 3D bend, where
variable source terms are automatically prescribed with fixed values along all boundary lines,
but surface values are allowed to slide.

Figure 6 shows a C-grid around an aircraft. In this case, only h was solved as a Dirichlet
problem, and the j lines are simply the algebraically generated initial values. Figure 6(a) shows
how divergence (distortion) will occur if the fixed boundary point distribution is not consistent
with the choice of control function. In Figure 6(b), this distortion has been eliminated.

Figure 7 shows an H-grid over a 2D car body. The grid was allowed to slide at the sides and
upper boundary, but was fixed at the lower wall. The jref values were set to jP at j=1. It can
be seen from the inset that the exponential control function can be used to concentrate cells

Figure 4. 2D bend: (a) Laplace system: mixed (Neumann) problem; (b) Poisson system; (c) Laplace system: Dirichlet
problem; (d) use of ‘automatic’ control functions to effect boundary orthogonality.
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Figure 5. 3D bend with sliding (Neumann) boundary conditions on six boundary surfaces with control functions
designed to procure orthogonality along 12 fixed boundary curves (lines).

highly without the occurrence of grid folding. Figure 8 is a similar 3D H-grid. In Figure 9, an
initially folded O-grid has been unfolded and concentrated by using the method described in
this paper.

3. DISCUSSION

The results demonstrate grid generation by means of the finite volume method and the grid
correction procedure, Equation (12). The main differences between the present method and a
conventional inverse scheme are highlighted in Table I. The following points are noteworthy:

Figure 6. O-grid around an aircraft: j lines algebraic, h lines elliptic (Dirichlet problem). Insets: boundary point
distribution (a) incompatible and (b) compatible with exponential control function (no divergence).
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Figure 7. H-grid around a 2D vehicle with Neumann boundary conditions at sides; inset shows that no grid folding
has occurred even when the grid is highly concentrated.

(1) the dependent variables are j, h, z, not x, y, z ; (2) diffusion coefficients are based on a
conservative discretisation, (
gg11)w, (
gg11)e, etc., not node-centred values gii

P (the same is
true for the non-orthogonal terms); and (3) the source terms are simply −
gP, −
gQ, etc.,
and no cross-terms (such as h source in the j equation) are required, as they would be in an
inverse scheme. Treated this way, j, h and z are independent, and it is possible to implement
a segregated solver.

The introduction of control functions as source terms in the governing equations allows for
effective control when these functions are prescribed to satisfy the extremum principle. There
is no requirement to code control functions as diffusion source equations. Alternative forms
exist, including variable G diffusion equations [33], convection–diffusion equations [34], etc.
(Figure 7 was coded by means of a convection–diffusion formulation). The same is true for
‘automatic’ control functions, i.e. the ‘velocities’ u=u*+u % used in place of Equation (29).
Another alternative to the use of control functions is to prescribe jref according to a bunching
law, or to use current nodal values instead of integers. Under these circumstances, boundary

Figure 8. H-grid around a 3D vehicle.
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Figure 9. (a) Initially folded grid is (b) unfolded and concentrated with the method presented in this paper.

j values are not fixed in the linear algebraic equations. If the same jref is used at opposite
boundaries (2D) or around an entire slab (3D), the grid will be parallel to the scalar field. Even
if j, h z are not parallel to jref, href, jref, the same results as those achieved by using variable
source terms may be obtained in a rapid and stable manner.

The solution of mixed boundary value problems with sliding boundaries is repeatable,
grid-independent and allows for effective grid control. The variables j, h, z are solved for, and
may be controlled independently. Stability is seldom a problem. With Neumann conditions,
the boundary (x, y, z) co-ordinates slide subject to, say, the constraint j(x, y, z)=constant, by
locating the point on the j surface a minimum from (x*+x %, y*+y %, z*+z %). No distinction
need be made between surface and regular grid generation in Euclidean space. However, a
general procedure for complex shapes is not trivial, and there may be constraints for the grid
to pass through specific points. There will always be situations where the user is obliged to
implement fixed boundary nodes. Initial grids then may be highly distorted because of the
combination of grid bunching and trans-finite interpolation. Also, stability becomes a matter
for concern. Because care was taken to generate proper functions satisfying the extremum
principle, grid folding [11,12] was not a problem, even when highly concentrated grids were
produced (Figures 7 and 8), and initially folded grids were unfolded (Figure 9). This operation
was facilitated by imposing limits 15jP5n on field variables, and ensuring that 
g was
always positive. In the solution of Dirichlet problems, the choice of boundary point distribu-
tion and control functions must be made consistently, or local dilatation will occur near the
boundary and control will be lost, as shown in Figure 6(a). For this example, only h was
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solved. The j values were generated by means of trans-finite interpolation, i.e. each variable
may be treated independently. In many problems it is difficult to prescribe a priori boundary
points consistent with the natural solution. A feature of the code is the facility to obtain results
for scalars j, h, z in a fixed grid j*, h*, z* by setting a=0 in Equation (12). These results
provide an idea of where boundary points should be located.

Tests showed the new procedure is comparable in speed with inverse methods under most
circumstances. Figure 10 shows the benchmark grids used to evaluate the performance of the
code. The meshes shown in Figure 10(a) and (b) were generated by using both the present
method and an inverse method, with linear coefficients, etc., prescribed according to Table I.
‘Automatic’ control functions were calculated on the basis of finite difference approximations
to the metric coefficients, as given in Equations (27) and (28). The grids shown in Figure 10(c)
and (d) were computed by using the present method only, according to Equation (29).

Figures 11 and 12 show monitor point data for the results of Figure 10. A Jacobi
point-by-point solver and Spalding’s strongly implicit whole-field solver [2,23] were used in

Figure 10. Benchmark problems: (a) and (b) H- and O-grids with ‘automatic’ control functions computed from metric
coefficients according to Equations (27) and (28): identical grids were generated by using both present and inverse
methods; (c) and (d): control functions prescribed from missing source terms according to Equation (29), present

method only.
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Figure 11. Monitor point data for benchmark problems: inverse method.

both cases. For the point-by-point procedure, the convergence history is nearly identical to the
inverse scheme. With the whole-field solver, there appears to be a slight penalty associated with
the present method for one of the two cases considered, probably because grid correction was
being applied only at the end of each sweep (not at every iteration). The benefits of strongly
implicit schemes in grid generation are the subject of debate. For example, Jordan and

Figure 12. Monitor point data for benchmark problems: present method.
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Spaulding [35] suggested this to be highly problem-specific. In fluid mechanics, however,
such schemes have been used routinely for decades to solve Poisson equations (e.g. the
pressure correction equation [1–3]). Here, the whole field scheme converged about ten times
faster than the Jacobi procedure. For the present method, the (x/(j terms needed for grid
correction were obtained by means of a central difference scheme, Equations (14)–(16).
Improvements could possibly be made by using a one-sided (upwind) difference scheme, or
a higher-order non-linear scheme based on an analytical solution to the governing (e.g.
diffusion source) equation.

‘Automatic’ control function schemes based on metric coefficients (Equations (27) and
(28)) produced grids that were not orthogonal at the boundaries, as shown in Figure 10(a)
and (b). The divergence terms [27] do circumvent major distortions at the boundary, as in
Figure 6(a), and the addition of curvature terms may improve overall grid quality. How-
ever, boundary point control was found not to be precise. This was true whether the results
were obtained by using the present method or a conventional inverse method.

When variable source terms (see Equation (29)) were used to produce boundary orthogo-
nality, the equations were solved as mixed (Neumann) problems, with S eliminating the
discrepancy between the Neumann and Dirichlet solutions. Technically, the j distribution is
a function of changes in h and z ; however, the effect is minor: only interior weightings, not
end values of S, are affected. This method does effect local orthogonality (Figure 10(c) and
(d)), but does not control the point distribution out from the wall, other than by way of
influencing the end points. A second control function strategy is required to do this.
Although the latter method was found to be applicable to highly concentrated grids, con-
vergence was not obtained with the whole-field solver: it required use of the point-by-point
procedure, with associated performance penalty. This effect appears to be due to fluctua-
tions in j arising from the strong coupling between the source terms and nodal (values
with Neumann boundary conditions). Attempts to impose Dirichlet conditions by fixing jP

to i at hb, and prescribing the source term, S, from the j-values at the north node (see
Figure 3(a)), or

SP=SP* +aN(i−jN), (30)

did not generate orthogonality. In fact, this procedure produced results similar to those
obtained by using the metric coefficient method (see Equations (27) and (28)). This out-
come suggests that Dirichlet-based boundary prescriptions may not be capable of generating
orthogonality unless off-boundary nodes are somehow adjusted.

The present method requires additional memory for j, h, z (only one of which is
required at any given time), when it is compared with a conventional code. Storage for x,
y, z, metric coefficients, etc., is required here, as elsewhere. The current implementation was
node-based, but may be adapted readily for cell-centred procedures. The same software may
be used, because the same algorithm as the one for the flow solver is used. One can take
advantage of available CFD codes with specific features like multi-block and fine grid
embedding, octree and unstructured hexahedral elements, use of multi-grid acceleration, and
built-in memory management techniques. Modification of existing codes to include grid
correction is a relatively simple task, and many important problems in grid generation (user
interface, domain decomposition, boundary condition prescription and automation) are
common to CFD flow solvers. Modification of the method for solution-based grid adapta-
tion [33] through the use of redistribution is clearly possible, as the scheme is inherently
adaptive.
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4. CONCLUSIONS

In previous grid generation methods, the governing equations are typically formulated in
physical space, inverted analytically, then solved by means of a finite difference approximation
on a uniform mesh in transformed space. In the present method, a numerical technique was
developed by using the idea that both the formulation and the solution occur in physical space.

A particular numerical scheme based on the solution of Poisson’s (diffusion source)
equation, which may be considered a subset of the scalar transport equation, was used to
generate grids by means of a vertex-centred finite volume method, which was combined with
a grid-correction (re-zone) scheme. The system of linear equations was solved through the use
of an explicit Jacobi point-by-point scheme as well as an implicit whole-field solver. Both fixed
and sliding conditions for the boundary grid points were considered, as were transcendental
and ‘automatic’ control functions. The use of sliding boundary conditions, when possible,
allows the generation of highly concentrated grids without the occurrence of grid folding
initially, although under many circumstances these were unfolded successfully with the present
method.

Control functions that satisfy the requisite extremum condition from an appropriate 1D
stretching function were derived by means of dimensional analysis. Automatic control func-
tions computed from metric coefficients based on the presumption of local orthogonality, as
well as functions designed to procure local orthogonality, were both implemented within the
scheme. The latter could be employed successfully only with the point-by-point procedure.
Grid control was also facilitated through the use of non-integer reference values for some 2D
grids, with several distinct stability and speed of convergence advantages over control-function
source terms. This technique may be extended readily to 3D meshes. In 3D, however, the grid
and solution fields are no longer parallel.

The discretisation scheme described in this paper is conservative, inherently stable and
versatile. It can replicate the state of the art in inverse methodologies, and also can be used to
explore possibilities that cannot otherwise be achieved. No distinction need be made between
surface and volume grid generation: everything occurs in Euclidean space. The control-
function source terms are quite simple (see Table I). Scalars j, h, z may be solved (and
controlled) one by one, i.e. independently. So-called ‘physical’ forms of partial differential
equations, as solved in various CFD codes, may be employed, instead of the ‘mathematical’
form used currently. The present method can be modified easily for grid adaptation, and is in
fact a ‘self-adaptive’ scheme. Any governing differential equations may be adopted; there is no
need to invert analytically prior to solution. Solving for j, h, z in a fixed grid (no grid
correction) gives the user an idea of where boundary points should be located. One can, in
effect, view the mesh without creating it, a useful feature at the developmental stage and in
problem solving. One works with the same algorithm as the one used in the flow solver, so that
with the addition of a grid correction utility, existing CFD codes may be modified to do grid
generation. This minimises redundancy in software libraries. Some disadvantages of the
present approach include the fact that the linking coefficients and non-orthogonal source terms
are more complex than in an inverse method. Slightly more memory may be required for the
storage of one or more of j, h, z in addition to the usual grid geometry, etc. The rate of
convergence of the present method is slightly below, or equal to, that of an inverse method for
two benchmark problems when re-zoning by means of a central difference scheme. It is to be
anticipated that with higher-order grid correction procedures, the present method may
generate superior performance. The whole-field solver converged much more rapidly than the
Jacobi point-by-point scheme, as might be expected for a Poisson system of equations.
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The use of pseudo-Poisson equations to describe grid generation equations mathematically
is somewhat arbitrary, in view of the non-linearity and interdependence of the control function
source terms. Non-linear source terms degrade the performance of linear equation solvers
significantly, and alternative formulations should be considered in the future. The governing
grid generation equations need not be in the form of Equation (5) or even Equation (1). Any
suitable partial differential equations may be adopted (parabolic, hyperbolic or elliptic). The
present method may be employed to obtain a numerical solution for the desired grid, whether
the governing equations are inverted analytically or not.
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